
Laboratory
Multimedia and Internet of Things

Computer Engineering Department
Institut Teknologi Sepuluh Nopember

Basic Programming
Practicum

String Array Branching Loop

2024

1 Goals

• Students are familiar with and able to use logical and comparison expressions in the C programming
language.

• Students are familiar with and able to use logical and comparison expressions in the C programming
language.

• Students can recognize and use while loops in the C language.

• Students can recognize and use do-while loops in the C language.

• Students can recognize and use for loops in the C language.

• Students can recognize and use for loops in the C language.

• Students can recognize and use for loops in the C language.

• Students can recognize and use strings.

2 Logical and Comparasion Expressions

2.1 Comparasion Expressions

The following are the operators used in comparison expressions.

Table 1: Comparasion Operator
Operator Name Expression Example

!= Not Equal To x != y
> Greater Than x >y

== Equal To x == y
< Less Than x <y

>= Greater Than Equal To x >= y
<= Less Than Equal To x <= y

A Comparison Expression will return boolean value true or false which is also represented with
the value of 0 or 1. As example:

printf("%d",0>1); // Print 0 to the screen

printf("%d",0<1); // Print 1 to the screen

2.2 Logical Expression

The following are the logical operators used on a Logical Expression

Table 2: Logical Expression
Operator Name Expression Example

&& AND x < 5 && x < 10

|| OR x < 5 || x < 4

! NOT !(x < 5&&x < 10)

Like comparison expression, logical expression will return boolean values.

1

3 Branch

3.1 If Statement

if statement is used to decide which block of code to be executed if the condition is true.

// Block code before if

if (Condition)

{

// Block of code that will be executed if the condition is true

}

// Block code after if

As example, look at the following code

Listing 1: If Statement Example
1 include <stdio.h>
2
3 int main()
4 {
5 // Variable Declaration
6 int myMoney ,breadPrice;
7 myMoney = 5000;
8 breadPrice = 10000;
9

10 if (myMoney >= breadPrice)
11 {
12 printf("I can buy that bread\n");
13 }
14 printf("hehe");
15 return 0;
16 }

Output of the program

hehe

If line 7 changed to myMoney=10000, the outputs of the program would be

I can buy that bread

hehe

3.2 If-else Statement

Else statement is used to decide the block of code to be executed if the condition is false.

// Block code before if

if (Condition)

{

// Block of code that will be executed if the condition is true

} else

{

2

// Block of code that will be executed if the condition is false

}

// Bloc code after if-else

The following is an example of using if-else statement:

Listing 2: If-else example
1 include <stdio.h>
2
3 int main()
4 {
5 // Varible declaration
6 int myMoney ,breadPrice;
7 myMoney = 5000;
8 breadPrice = 10000;
9

10 if (myMoney >= breadPrice)
11 {
12 printf("I can buy that bread\n");
13 }
14 else
15 {
16 printf("I can’t buy that bread\n");
17 }
18 printf("hehe");
19 return 0;
20 }

Below is the output of that program

I can buy that bread

hehe

If line 7 changed to myMoney=10000, the outputs of the program would be

I can’t buy that bread

hehe

3.3 Pernyataan if-else if

The else if statement is used to run a block of code when the condition in if or the previous else if

is false.

// Code block before the if statement

if (Condition1)

{

/* Code block to be executed if Condition 1

is true */

}

else if (Condition2)

{

/* Code block to be executed if Condition 1 is false

3

and Condition 2 is true */

}

else if (Condition3)

{

/* Code block to be executed when

Condition 1 and Condition 2 are false, and

Condition 3 is true */

}

...

else if (ConditionN)

{

/* Code block to be executed when

Condition 1 to Condition N-1 are false, and

Condition N is true */

}

else

{

/* Code block to be executed when

Condition 1 to Condition N are false */

}

// Code block after the if statement

Below are an example of if-else statement

Listing 3: If-else example if
1 include <stdio.h>
2
3 int main()
4 {
5 // Varible declaration
6 int myMoney ,breadPrice;
7 myMoney = 5000;
8 breadPrice = 10000;
9

10 if (myMoney >breadPrice)
11 {
12 printf("I can buy that bread\n");
13 }
14 else if(myMoney == breadPrice)
15 {
16 printf("I can buy bread , but my money will run out immediately");
17 }
18 else
19 {
20 printf("I can’t buy that bread\n");
21 }
22 printf("hehe");
23 return 0;
24 }

4

Output of this program are below

I can’t buy that bread

hehe

If line 7 changed to myMoney=10000, the output of the program would be

I can buy bread, but my money will run out immediately

hehe

If line 7 changed to myMoney=12000, the output of the program would be

I can buy that bread

hehe

3.4 Nested if

Nested if is when there is a conditional statements within a block of code inside the conditional state-
ment

// Code block before the if statement

if (Condition1)

{

if (Condition2)

{

// Do something

}

else

{

// Do other thing

}

}

else

{

// Do other thing

}

Below is an example of using nested if

Listing 4: Nested if example
1 include <stdio.h>
2
3 int main()
4 {
5 // Declare the variables
6 int myMoney ,breadPrice ,friendsMoney;
7 myMoney = 5000;
8 breadPrice = 10000;
9 friendsMoney = 42069;

10

5

11
12 if (myMoney >breadPrice)
13 {
14 printf("I can buy bread\n");
15 }
16 else if(myMoney == breadPrice)
17 {
18 printf("I can buy bread but I will ran out of money\n");
19 }
20 else
21 {
22 if(friendsMoney+myMoney >= breadPrice)
23 {
24 printf("I can buy bread if I borrow my friend money\n");
25 }
26 else
27 {
28 printf("I can’t buy bread\n");
29 }
30 }
31 printf("hehe");
32 return 0;
33 }

3.5 Pre-lab Assignment

1. what is the purpose of branching in programming?

2. Apart from using if statements, branching can also be done using switch-case statements. Ex-
plain what you know about switch-case statement!

3. Try to make a program that receives 3 integer input A, B, and C. Then outputs those 3 integers
to the screen sorted from largest to smallest. Do this only using conditional statements.

4 Loop

4.1 Loop while

While loop will run the code block within it repeatedly as long as the loop condition is true

6

Figure 1: Flow chart loop while

Its syntax in C programming language is as follows

while(Condition)

{

// Block of code that will be repeated

}

As an example, look at the following code

Listing 5: While implementation example
1 int main()
2 {
3 int myMoney ,breadPrice;
4 myMoney = 10000;
5 breadPrice = 2000;
6 while(myMoney >= breadPrice)
7 {
8 printf("Buy 1 bread , my money left %d", myMoney - breadPrice);
9 myMoney -= breadPrice;

10 }
11 printf("I don’t have enough money");
12 return 0;
13 }

Output in program 5 are below

Buy 1 bread, my money left 8000

Buy 1 bread, my money left 6000

Buy 1 bread, my money left 4000

7

Buy 1 bread, my money left 2000

Buy 1 bread, my money left 0

I don’t have enough money

You can see the line 9 of the code causes the variable myMoney to have its value substracted by
2000 for every loop until myMoney is no longer greater than equal to breadPrice. The loop condition
will be invalid and finaly exits the loop. Then it prints "Uang saya tidak cukup lagi", the command after
the while loop statement.

4.2 Do-while loop

do-while loop is very similar to while loop. The only difference is that do-while loop will execute the
code block inside it once, and then checks the condition.

Figure 2: Do-while statement

Its syntax in C is as follows:

do{

// the block of code that will be repeated

}while(Condition)

Look at the following example.

Listing 6: Do-while implementation example
1 int main()
2 {
3 int myMoney ,breadPrice;
4 myMoney = 10000;
5 breadPrice = 12000;
6 do{
7 printf("Buy 1 bread , my money left %d", myMoney - breadPrice);
8 myMoney -= breadPrice;
9 }while(myMoney >= breadPrice)

8

10 printf("Uang saya tidak cukup lagi");
11 return 0;
12 }

The output of the code above in Listing 6 are

Buy 1 bread, my money -2000

I don’t have enough money

The variable myMoney is substracted by breadPrice before checking the myMoney>=breadPrice con-
dition. Had the code above uses while loop, the repeating block of code wouldn’t have executed even
once.

4.3 For loop

If you have a block of code like this:

InitializationStatement; // e.g.: int i = 0;

while(Condition){

// do something

updateStatement; // e.g.: i++

}

This is equal to

for(InitializationStatement;Condition;updateStatement){

// do something

}

As example, look at the following code:

Listing 7: For implementation example
1 int main()
2 {
3 int i=0;
4 for(i=1;i<10;i++){
5 printf("%d ",i);
6 }
7 return 0;
8 }

The output of this program are

1 2 3 4 5 6 7 8 9

The following is the code if code in Listing 7 converted to its while-loop form

Listing 8: For in form of while
1 int main()
2 {
3 int i=0;
4 i=1;
5 while(i<10){

9

6 printf("%d ",i);
7 i++;
8 }
9 return 0;

10 }

Notes: In programming, the "break" keyword is used to exit a loop prematurely,
while the "continue" keyword is used to skip the current iteration of a loop and
proceed to the next iteration. These keywords are commonly used in loops to
control their behavior and make the code more efficient. You can explore their
usage further in programming resources and tutorials.!

4.4 Pre-lab Assignment

1. What happens if we write break; in a loop?

2. Try to make a program in C that calculates the factorial of a non-negative integer entered by the
user using a do-while loop. Show the results.

3. Try to make a program in C language to find prime numbers between 1 and 100. Use the for
loop to iterate through all numbers and the continue statement to ignore numbers that are not
prime. Display all found primes.

5 Array

Array is a collection of data where each element of it has the same name(indexed) and data type.
Every element in an array can be accessed using its element index.

5.1 Array 1D

One dimensional array variable can be declared by deciding the data type of the element and the
number of element that is needed.

Syntax:

DataType variableName [arraySize];

1. DataType.
The data type of the elements in the array, e.g. float, int, etc.

2. variableName

variableName follows the variable naming convention

3. arraySize

Integer more than 0. Defining the number of element an array has.

Initializing one dimensional array can be done like shown below:

int contoh_array[5] = {4,2,0,6,9};

10

Data in an array can be accessed by using an integer that is the index of the array. Look at the
code below

Listing 9: Accessing 1D array implementation
1 int main()
2 {
3 int arr [5] = {4,2,0,6,9};
4 printf("%d\n",arr [0]);
5 printf("%d\n",arr [4]);
6 int i = 0;
7 printf("%d\n",arr[i]);
8 for(i=0;i<5;i++)
9 printf("%d",arr[i]);

10 }

The code in Listing 10 will give output

4

9

4

42069

5.2 Array 2D and Other Multidimensional Array

2D array is basically a 1D array of 1D array. Intuitively, you can define a 2D array like as seen below:

DataType variableName[arraySize1][arraySize2];

This also applies to multidimensional array.

DataType variableName[arraySize1]...[arraySizeN];

There will be arraySize1 × arraySize2 × · · · × arraySizen of elements that would be allocated to the
memory after doing multidimensional array like that.

To initialize multidimensional array, you can do the following:

int arr[2][2] = {{1,2},{3,4}};

5.3 Pre-lab Assignment

1. TWrite a program that accepts input numbers 1 to 9 from the user, then inserts all the numbers
into an array!

2. What would happen if an array arr is accessed with arr[-1]?

3. What would happen if an array arr with size 5 is accessed with arr[5]?

4. Look at the following code

for(i=0;i<10;i++){

for(j=i;j<10;j++){

printf("A");

11

}

}

How many "A" will be printed on the screen if that block of code is executed?

6 String

In general, a string is a collection of one or more characters. Specifically in the C language, a string
is defined as a collection of characters terminated by a null character.’\0’.
For example, string "Dasar", in C programming language can be represented in a collection of char-
acter ’D’, ’a’, ’s’, ’a’, ’r’, dan ’\0’.

6.1 String Uses

Because a string is essentially an array of characters, creating a string data type in C follows the same
approach as creating an array. Here’s an example:

Listing 10: Char in string implementation
1 #include <stdio.h>
2
3 int main(void)
4 {
5 char foo[8] = {’b’,’e’,’l’,’a’,’j’,’a’,’r’,’\0’};
6 printf("Isi variabel foo adalah %s \n", foo);
7
8 return 0;
9 }

‘\0’ is one of requirement in order to create a string in C programming language. Every string
need a "special" character to indicates it’s end. This ‘\0’ represented null characther which use in C
programming compiler as an indication of the end of the string

Source code implementation scanf to read string:

Listing 11: String with scanf implementation
1 #include <stdio.h>
2
3 int main() {
4 // Declare variable to store input from user
5 int age;
6 float height;
7 char name [50];
8
9 // Request user to input their age

10 printf("Enter your age: ");
11 scanf("%d", &age);
12
13 // Request user to input their height
14 printf(Enter your height (in meter): ");
15 scanf("%f", &height);

12

16
17 // Request user to enter their name
18 printf("Enter your name: ");
19 scanf("%s", name);
20
21 // Display user information
22 printf("Name: %s\n", name);
23 printf("Age: %d year old\n", age);
24 printf("Height: %.2f meter\n", height);
25
26 return 0;
27 }

Source code example gets to read string:

Listing 12: String with gets implementation
1 #include <stdio.h>
2
3 int main () {
4
5 char arr [100];
6 while(true)
7 {
8 gets(arr);
9

10 printf("-- %s\n", arr);
11 }
12 return 0;
13
14 }

String that read using scanf or gets will automatically has null character in the end.

6.2 String Functions

In the C programming language, there is a library created with the purpose of facilitating users in
string manipulation. This library is stored in <string.h>, therefore, to access this library, an additional
preprocessor directive is required, which is::

1 #include <string.h>

Learn other function in www.cplusplus.com.

6.3 Pre-lab Assignment

1. Create a program in C programming language that takes 2 string from the user input and decide
whether those 2 string are an anagram (contains the same characters even in different order).
For example "night" and "thing".

2. Explain the difference between string that is declared as an array of charater (char array) and a
string that is declared as a string data types (string literal). Explain example of using both

3. Name 5 functions from the string.h library! explain each function!

13

http://www.cplusplus.com/

4. To get string output, instead of using printf() we can also use puts(). Explain the advantages
of using puts() compared to printf()!

14

	Goals
	Logical and Comparasion Expressions
	Comparasion Expressions
	Logical Expression

	Branch
	If Statement
	If-else Statement
	Pernyataan if-else if
	Nested if
	Pre-lab Assignment

	Loop
	Loop while
	Do-while loop
	For loop
	Pre-lab Assignment

	Array
	Array 1D
	Array 2D and Other Multidimensional Array
	Pre-lab Assignment

	String
	String Uses
	String Functions
	Pre-lab Assignment

