
Laboratory
Multimedia and Internet of Things

Computer Engineering Department
Institut Teknologi Sepuluh Nopember

Basic Programming
Practicum

Pointer and Struct

2024

1 Goals

• Students are able to understand the concept of pointers in C.

• Students are able to create and call a struct in C.

• Students are able to understand about sorting algorithm in C.

• Students are able to understand about searching algorithm in C.

• Students are able to apply the conceptof searching and sorting algorithm in C.

2 Pointers

2.1 Memory Address

Every variables, functions, structs, or any object in a program have their own memory allocation. Said
Allocations are saved in certain memory addresses

If there are any variable var in your program, &var will return its address in memory

1 int var = 5;
2 printf("%d\n", var);
3 printf("%p\n", &var);

Catatan: Output may differ in each execution.

2.2 Introduction to Pointers

Pointers is a special variable that serves to save addresses, not value.
To declare a pointer variable, use * operator between the data type and it’s variable name.

1 #include <stdio.h>
2 int main()
3 {
4 int* p; // atau
5 int * p2;
6 return 0;
7 }

2.3 How Pointers Work

The following is to show how pointers work.

Listing 1: Program Example
1 #include <stdio.h>
2 int main()
3 {
4 int* pc, c;
5
6 c = 22;
7 printf("Address of c: %p\n", &c);
8 printf("Value of c: %d\n\n", c); // 22
9

1

10 pc = &c;
11 printf("Address of pointer pc: %p\n", pc);
12 printf("Content of pointer pc: %d\n\n", *pc); // 22
13
14 c = 11;
15 printf("Address of pointer pc: %p\n", pc);
16 printf("Content of pointer pc: %d\n\n", *pc); // 11
17
18 *pc = 2;
19 printf("Address of c: %p\n", &c);
20 printf("Value of c: %d\n\n", c); // 2
21 return 0;
22 }

Explanation:

1. int* pc, c;

Figure 1

2. c = 22;

Figure 2

3. pc = &c;

Figure 3

4. c = 11;

2

Figure 4

5. *pc = 2;

Figure 5

2.4 Double Pointer

A pointer could also point to another pointer variable. This is called a double pointer (pointer to pointer).
To declare a double pointer, we use two * operator between the data type and its variable name. The
general usage of this double pointer variable is ti create a two dimensional array dinamically.

1 int **dbPtr;

Variabel dbPtr di atas menyimpan alamat memori dari variabel pointer lainnya.
Berikut contohnya

The variable dbPtr above contains a memory address of another pointer variable.
Take a look at the example below.

Listing 2: Double Pointer Example
1 #include <stdio.h>
2
3 int main(void)
4 {
5 int var = 23;
6 int *ptr = &var;
7 int **dbPtr = &ptr;
8
9 printf("%d\n", ** dbPtr);

10
11 return 0;
12 }

2.5 Pre-lab Assignment

1. Explain everything you know about pointer!

2. Explain how to declare a pointer to a multidimensional array?

3

3. Create a program in C or C++ that implements void printMatrix(int **matrix, int rows, int cols)
function to print out a 2D matrix using pointer to pointer. And then in the main function, create a
2D matrix and call the printMatrix function to print said matrix.

3 Struct

In C, struct is a collection of variables (could be in various types) under one name. Unlike an array
that could only store elements with the same data type, struct is able to group elements with different
data types.

3.1 Deklarasi Struct

Similar to variables, a struct must be declare first before use. Below is an example on how to declare
a struct.

1 struct <struct_name > {
2 <member_dataType > <member_name >;
3 <member_dataType > <member_name >;
4 <member_dataType > <member_name >;
5 .
6 .
7 .
8 };
9

Berikut adalah contoh deklarasi struct berdasarkan kasus Mahasiswa. Below is a case example
of struct declaration about students data.

1 struct Students
2 {
3 char *name;
4 char *address;
5 int age;
6 };
7

Note: Use pointer * for string data type

After declaration, a struct will be its own data type. In this case, Students data type will be its own
new data type with members such as name, address, dan age. Take a look at an example below to
declare a variable with the struct data type.

1 struct <struct_name > <variable_name >;

Example:
1 struct Students mhs1;
2 struct Students mhs2;

Contoh di atas menunjukkan terdapat dua variabel mhs1 dan mhs2 bertipe struct Mahasiswa. The
example above shows that there are two variables mhs1 and mhs2 with \verbMahasiswa| struct data
type.

4

3.2 Struct Member Access

Bagaimana cara untuk mengakses member dari variabel struct yang telah dibuat?
Untuk mengakses member-member dari struct, digunakan operator dot (.) setelah nama variabelnya.
How do you access members from a struct variable?
To access members from a struct, we use a dot (.) operator after its variable name.

1 <variable_name >.<member_name >

Example:

1 mhs1.age = 69;
2 mhs1.nama = Surya;
3
4 mhs2.nama = Pebrianto;
5 mhs2.age = 42;

3.3 Pre-lab Assignment

1. what is the advantages of using struct!

2. Create a struct that represent informations about a students, the informations their name, student
ID, and GPA. And then, create a program in insert student informations, display them, and
calculate the average GPAs of a certain number of students

3. Create a struct that represents coordinate points in a two dimensional plane (x,y). And then cre-
ate a C program to calculate the distance between two points that a user inputs with a Euclidean
formula.

4 Sorting algorithm

Sorting is a process of arranging or organizing data.
There are two types of data sorting, namely :

1. Ascending (small to large).

2. Descending (large to small).

4.1 Bubble Sort

Bubble sort is a sorting algorithm that compares two adjacent data points and swaps them until they
are in the desired order. Bubble sort utilizes iteration method. iteration is a process of repeating a
loop as many times as there is known data. Essentially, during each iteration, a comparison is made
between two data points.

5

Figure 6

Listing 3: Bubble Sort Implementation
1 void swap (int * xp , int * yp) {
2 int temp = *xp;
3 *xp = *yp;
4 *yp = temp;
5 }
6
7 void bubbleSort(int arr[], int n) {
8 int i, j, swapped; // optimized with bool ‘swapped ‘:
9 for (i = 0; i < n-1; i++) {

10 swapped = 0;
11 for (j = 0; j < n-i-1; j++) {
12 if (arr[j] > arr[j+1]) {
13 swap(&arr[j], &arr[j+1]);
14 swapped = 1;
15 }
16 }
17 if (swapped == 0)
18 break;
19 }
20 }

4.2 Insertion Sort

Insertion sort is a sorting technique that involves repeatedly inserting or placing each element. Imag-
ine reshuffling a deck of cards to organize it.

6

Figure 7

Listing 4: Insertion Sort Implementation
1 void insertionSort(int arr[]. int n) {
2 int i, key , j;
3 for (i = 1; i < n; i++) {
4 key = arr[i];
5 j = i-1;
6
7 while (j >= 0 && arr[j] > key) {
8 arr[j+1] = arr[j];
9 j = j-1;

10 }
11 arr[j+1] = key;
12 }
13 }

Note: There are other sorting algorithms. Look it up individually

4.3 Pre-lab Assignment

1. What is Big O notation?

2. Sort the following array using Bubble Sort:

Array: [5, 2, 9, 1, 5, 6]

3. Hitung kompleksitas waktu (Big O) dari algoritma Insertion Sort saat mengurutkan sebuah array
dengan panjang n, dan jelaskan bagaimana kompleksitas ini dihitung.

7

4. Calculate the time complexity (Big O) of the Insertion Sort algorithm when soring an array of
length n, and explain how this complexity is calculated

5 Searching Algorithm

Searching is a process of looking the desired data.

5.1 Linear Search

Linear Search bekerja dengan melakukan pengecekan kepada semua elemen yang ada.
Secara garis besar, cara kerja Linear Search adalah:

Linear Search works by checking all of the existing elements.
Essentially, the working principle of Linear Search is:

1. Checking items one by one.

2. When it is found, the program will execute any statements that needs a condition of an item to
be found.

3. If the algorithm had checked every single data, then the desired item does not exist.

Listing 5: Linear Search Implementation
14 int linearSearch(int arr[], int n, int item) {
15 int i;
16 for(i = 0; i < n; ++i) {
17 if(item == arr[i])
18 return 1;
19 }
20 return -1;
21 }

5.2 Binary Search

Binary Search is a searching technique where in each iteration we separate the searching space to
half the initial searching space until we find the desired item.

Listing 6: Binary Search Implementation
22 bool f(int k, int a, int b, int n) {
23 return ((k/a) * (b/a) >= n);
24 }
25
26 int binser(int a, int b, int n) {
27 int l = 1;
28 int r = 100000;
29 while (r - l > 1) {
30 int mid = (l + r) >> 1;
31 bool can = f(mid);
32 if(can)
33 r = mid;

8

34 else
35 l = mid + 1;
36 }
37 if (can(l))
38 return l;
39 else
40 return r;
41 }

Note: There are other sorting algorithms. Look it up individually

5.3 Pre-lab Assignment

1. There is data as follows: [49, 60, 69, 42, 1, 97, 65, 77, 100, 28, 46]. Use the binary search
algorithm to find out whether there are prime numbers in the data!

2. Explain the difference between Linear Search (Sequential Search) and Binary Search. in what
scenario that you choose one method over the other?

3. Try looking for other searching algorithms, and explain their advantages and disadvantages!

9

	Goals
	Pointers
	Memory Address
	Introduction to Pointers
	How Pointers Work
	Double Pointer
	Pre-lab Assignment

	Struct
	Deklarasi Struct
	Struct Member Access
	Pre-lab Assignment

	Sorting algorithm
	Bubble Sort
	Insertion Sort
	Pre-lab Assignment

	Searching Algorithm
	Linear Search
	Binary Search
	Pre-lab Assignment

